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Abstract. In this paper1 we present a design of autonomous robot built for 
Eurobot 2008 contest by the MART team. We describe chosen strategy and the 
way of its implementation, localization on the playing field using Monte Carlo 
Localization and methods we use for moving the robot such as trajectory gen-
eration mechanism and PID regulation. 
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1 Introduction 

This paper presents Logion – a robot build for Eurobot autonomous robot contest, 
namely its 2008 edition with theme “Mission to Mars” [1]. We will show the high-
level control algorithm and chosen strategy, the robot behaviour in special situations 
and several helper functions which are used by the “Brain” of the robot. Such func-
tions include Monte Carlo Localization module (covering also sensors usage), trajec-
tory generation mechanism and navigation helpers to adjust robot position near indi-
vidual playing elements.  

The robot (see Fig. 1) has been designed and built by a student group at Faculty of 
Mathematics and Physics, Charles University, Prague – the MART team [2]. Even the 
first motivation was the own interest of the team members in robotics, it was also pos-
sible to attach this project to several lectures and tutorials forming the Computer Sci-
ences curriculum. The goal was educative; the team did not have to create a super-
speedy super-intelligent robot with ambitions to win one specific contest, but rather to 
create a collective group work where all members could contribute to as well as gain 
from this experience and create a robot whose design would allow to reuse the mod-
ules or even the whole robot for other purposes (like for example for the Robotour 
outdoor contest [3]). 

                                                           
1 The work was partly supported by the project 1ET100300419 of the Information Society Pro-

gram of the National Research Program of the Czech Republic. 
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2 Design overview 

The Eurobot contest rules are different every year. However, basic attributes remain 
the same over years: during a 90 sec match, two autonomous robots perform certain 
tasks on a playing field in a friendly spirit. Specific topic is renewed every year and 
requires general rework if a team wants to reuse its robot from previous year. There-
fore we decided to design the robot so that as many as possible of its modules could 
be reused without dropping everything and starting from scratch again. 

For the 2008 edition, the theme is called “Mission to Mars”. The robots have to 
find and collect “rock samples” (represented by coloured floorballs) and store them in 
“containers for sample transfer back to the Earth” (represented by three containers 
mounted on the outside border of the playing field). The samples may be found laying 
on the “Mars surface” (the playing field floor) or in special dispensers mounted on the 
playing field border. 

 
Fig. 1.  Logion robot with its covers removed 

The rules require the diameter to be at most 120 cm at start time and 140 cm at any 
time during the match if the robot uses deployable mechanisms. The Logion robot di-
ameter stays nearly the same during the match with the only slight exception concern-
ing the ball extraction mechanism. This device is formed by two “fingers” which ro-
tate and pick balls from the vertical dispensers. 

The robot uses differential steering by two powered wheels with attached encoders 
providing odometry information. The body is supported by one unpowered and un-
controlled caster. Its mechanical construction consists of individual modules mounted 
together in layers so that it can be dismounted and the modules reused for further pro-
jects.  
As we wanted to use a lot of computing power (picture analysis, smart algorithms 
etc.) we decided to use standard PC platform as the main computing unit. To use as 
much computing power as the processor can offer, we powered the PC with Gentoo 
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Linux. Other advantage of using Linux is the ease of using the connected hardware 
via nice and clear abstraction. 

The top-level controlling software is written in C++ with the use of object oriented 
programming. Kernel modules and MCU firmware was written in C. Minor part of 
the project like monitoring over the network was written in C#. 

As the main features of the robot controlling software we can talk about robot 
moving which use autopilot to drive to absolute position, curves to plan routes trough 
the balls and avoid opponent, Monte Carlo localization or picture analysis from web-
cam. We use computer vision algorithms to detect vertical dispensers and finest navi-
gation to them. OpenCV [4] – an Open Source Computer Vision library by Intel 
helped us with this. 

For more technical reference, see Chapter 9 or MART team web pages [2]. 

3 Robot brain 

In this section we describe the main control part, which is responsible for the overall 
strategy and its implementation. Therefore we call it the Brain. 

The Brain is driven by quite standard state machine (see Fig. 2). The states repre-
sent individual parts of the robot’s mission. For example, the state “Extract samples” 
consists of a sequence of actions which picks the ball from a vertical dispenser. This 
state requires the robot to be well positioned in front of the dispenser, which is per-
formed by the state called “Go to dispenser” which selects the dispenser to go to and 
makes the movement and positioning of the robot. When the robot collects five balls 
(the limit set by the rules), the control is passed to the state “Go to container”. 

We wanted to design the robot control to be robust. It was obvious the robot has to 
react to situations which can appear without any dependence on the state. Therefore, 
in addition to the state machine, we have created several triggers which are repeatedly 
checked by the Brain. Such problematic situations include for example the possible 
collision with the opponent’s robot or when the robot stucks after unexpected bump to 
the border. 

In case such asynchronous situation occurs, the Brain switches from the actual 
state to the specific situation handler. Based on the situation character and its handler 
implementation, upon the handler completion the previously executed state is re-
started or the state machine is set to a state specified by the handler. To implement 
this mechanism, a simple threading was used. The main Brain thread controls the state 
switching and the special event checks. It performs only non-blocking and fast opera-
tions. Individual operating state actions are called in the BrainSlave thread. The main 
Brain thread may stop this slave at any time and if it is needed, it may replace it by a 
thread performing action of a different state. Fig. 2 shows the state machine without 
the asynchronous event checks. 
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Fig. 2. The main state machine 

4 Localization 

To perform its tasks, the robot must be able to localize itself on the playing field. In 
the following paragraphs we present our approach. 

We decided to use the already well established Monte Carlo localization (MCL) 
idea [5] because its idea is simple yet powerful. To acquire environmental data, we 
use various sensors which can provide some position information. We can use as 
many sensors as there are available on the robot and based on their respective reliabil-
ity we can obtain very good results. These sensor data credibilities are implemented 
as weights of every device measured data. In our case, we have equipped both main 
motors with fine resolution encoders. Data from the encoders is continuously gathered 
on the HBmotor board from where it is transferred to the main controller with the fre-
quency of roughly 10 samples per second. It is reliable information for relative local-
ization only for a while; the main disadvantage of odometry is its relative character. 
As the new position is computed from the last position, the knowledge of mechanic 
construction and the information from encoders, the eventual error is incrementally 
cumulated. Without regards to how precise the encoders are, odometry cannot retain 
precise position for a long time. In our case the position calculated solely from 
odometry was usable only for about four meters of the robot run. Moreover, it is im-
possible to determine wheels slip in case of collision with opponent robot or when hit-
ting the playing field border. 

For reliable localization, we needed absolute information. For this purpose we tried 
to use an electronic compass CMPS03 [6]. But as we find later, such compass in-
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stalled on a metal robot with electric motors is really faithless sensor. Motor activa-
tion changes the compass information for about 20 to 50 degrees away. Despite of 
this, the information still could be used, just very carefully. In MCL, we penalize only 
samples whose direction differs more than 90 degrees from the measurement. 

As an additional source for absolute positioning we have developed beacons. In 
Eurobot 2008 edition, it was possible to use 4 beacons placed around the playing 
field, at the opponent’s robot and on our robot. We have used three active (transmit-
ting) beacons around the playing field and one passive (receiving) beacon on our ro-
bot (see their schematized positions on Fig. 3). Every active beacon transmits an in-
frared and an ultrasonic signal at the same time. The passive beacon receives both 
signals and based on the delay between them we can very precisely determine the dis-
tance between the active and the passive beacons. To avoid false detection (e.g. from 
opponent systems or from other surrounding noise), we use coded signal (pulse-
position modulation). We can determine if it is a signal transmitted form our beacon 
and we can also identify which of our beacons is the transmitter. 

Because of the nature of ultrasonic signal, we cannot avoid false detection caused 
by the signal rebounds. In fact, there were a lot of such rebounds in our lab. We had 
therefore a good motivation to build a robust system for using information from bea-
cons. In one hand we have very good and precise information about distance from a 
beacon (in real max ± 5 cm) while in the other hand we get false information some-
times. 

 
Fig. 3. Beacons distance information (screenshot) 

 
In our first attempt we used this information in MCL in the simplest way. The bea-

con signals were handled independently and we penalized the samples linearly ac-
cording to distance from a beacon every time we received the signal. This method has 
significant disadvantage in case we are on a location where we receive a lot of re-
bounded signals. In such situation all MCL samples move to that false radius. 

As an improvement, we combine the three beacon signals before the samples 
weights are updated. In case we have received distance information from all three 
beacons during short time and all three radiuses had one common intersection, we in-
creased the weight of MCL samples in close surrounding of the intersection and de-
creased samples weight which were not close enough. If only two beacon signals ar-
rive, we use the two intersections of the two radiuses but in this case we updated 
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samples weight more carefully. And if we got only one radius we updated the weights 
even more carefully. We decided not to use linear dependence anymore. If the sam-
ples are not near the measured position, their weights are decreased by constant and 
therefore samples are not affected by false information. 

5 Moving 

 
The Brain manoeuvring mechanism (the Autopilot) uses a module called Driver 
which provides complex API for controlling the robot move. For the Driver, we have 
decided to create two driving methods which use absolute and relative movement, re-
spectively.  

The first method drives the robot to a certain place on the playing field when this 
place is entered using absolute coordinates. For successful navigation with this mov-
ing type, at least estimative position knowledge is needed. Two typical commands for 
this method are “Go to position” and “Rotate to”. 

The actual movement was in this mode controlled by the Autopilot with the help of 
two curves (see Fig. 4). One curve shows dependency between the speed and the dis-
tance to the goal, the second curve shows dependency between the difference of mo-
tors speeds and angular deviation of actual robot heading to the desired heading. 

   
Fig. 4.  Autopilot control curves for different robot weights: Speed to Distance (left),  

Motors speed difference to Angular deviation (right) 

The Autopilot control functions are designed so that the robot slows down when ap-
proaching the goal position and so can arrive to the required position more precisely 
(this applies to both the x-y placement as well as the angular rotation of the robot). 
Before the movement was implemented this way, the robot could exhibit oscillation 
around the desired position because of its mass and the traction characteristics.  

Both curves are defined by two parameters which should be set accordingly to the 
robot body construction and should be recalibrated when the wheelframe is modified 
or when the robot weight considerably changes. 
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The second driving method is a relative movement. It is used for precise position-

ing of the robot. We use this method for example to precisely adjust the robot in front 
of the vertical dispenser before the robot tried to extract balls from it. Another use for 
this method was to recover from robot blockage at the border. In such a case, it is 
quite likely that we do not know the exact position of the robot, otherwise we would 
not drive the robot so that it collides with the border. Therefore the relative movement 
is the only right style. Two typical command for this driving method are “Forward 
with speed“ and “Rotate by“. 

For speed regulation we use standard proportional–integral–derivative (PID) con-
troller. This controller was implemented as one of the Driver functions. This decision 
allowed us to generate very detailed outputs which were especially useful during the 
fine-tuning of robot control parameters and for explaining its occasional strange be-
haviour. We also considered the PID implementation to be set in the lowest layer (in 
the HBmotor board MCU, which controlled directly the motor rotation via regular H-
bridge circuit; for details, see [2]), which could speed it significantly. However, look-
ing back, we think we made good decision. During the implementation process, we 
have met with many different problems we were not aware of from the theory. For 
example, we had to limit the derivative component as it could raise above all reason-
able values when the robot got stuck somewhere and after resolving of that problem it 
took a very long time to decrease to normal values (which in fact disallowed correct 
robot driving).  

Basic PID parameter setting was done based on Ziegler–Nichols method [7]. Dur-
ing the last phases of robot building, its weight changed in the range of ± 8% which 
negatively affected the robot’s smooth motion. Therefore the PID parameters had to 
be tuned to suit the new situation. We did this tuning manually and thanks to the PID 
implementation in the HW abstraction layer, it was possible to do it on the fly when 
the robot was running on the playing field in square trajectory. At the same time, we 
were able to see the direct impact of the change on the motion smoothness as well as 
get the PID regulator graphs what would be hardly possible with the PID regulation 
implemented in the lowest layer. 

The combination of Autopilot functions allows driving in non-trivial curves. Using 
purely those functions, the motion would be limited to a simple point-to-point naviga-
tion. However, as a result of the action planning, we are able to create a list of succes-
sive sub-goals. It would be nice to be able to create a curve that represents the optimal 
path trough all the sub-goals to the final position. In case of Eurobot 2008 contest, 
that could be used for collecting more balls on the table during one continuous motion 
and bringing them to the destination container. As we will show in Chapter 7, it can 
be also used for collision avoidance by simply inserting a new sub-goal into the goal 
list.  

Simple planning of the motion from one point to the next one is not feasible as it 
does not guarantee smooth joints and the robot physically cannot make instant move-
ment changes. Therefore we had to seek more advanced algorithms than simple join-
ing of the curves and create one segmented curve with “nice behaviour”, at least to 
provide continuous and smooth joins. We decided to use Hermite curves, because 
these curves meet the expectations, are easily calculable and on the top of it, they pass 
through their control points (see Fig. 5). To calculate one curve segment we need only 
to know the positions and the tangents of its two endpoints. If more segments are 
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combined to create a joint curve and the tangents for the join points (the “check-
points”) are the same, the resulting curve meets our expectations. For our purposes, it 
was even possible to make the tangents optional, which lets the input to be really 
minimal. 

 
Fig. 5. Examples of Hermite curves (P0, P1: control points, T0, T1: tangents) 

 
The tangent vectors can be sensed as analogous to the direction and speed of the 

curve at that point. We have found that if we make the tangents always point to the 
next checkpoint, we acquire reasonably good compound curve while minimizing in-
puts for the calculations done by the Manoeuvre class. Its interface allows adding, 
removing and changing of the curve checkpoints to form a queue. After we reach the 
next checkpoint in the queue, it becomes the starting point. Fig. 6 shows an example 
of planned trajectory to collect all balls detected on the playing field surface during 
the so-called “harvest” phase. The ball positions are used as checkpoint and as such 
they define the curve segments. If a new target is detected along the robot journey, it 
can be easily added to the already existing list as a new checkpoint. 

  
Fig. 6. Hermite curves used for balls harvest (screenshot) 
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6 Dispenser detection 

The Mars rock samples are in the Eurobot contest located in three principally different 
prospecting zones: on the surface, in one of the four vertical dispensers (5 rock sam-
ples in each) and in one horizontal dispenser (12 samples). In this section we focus on 
the dispenser detection and exploitation. 

The current implementation of Logion robot does not use the horizontal dispenser. 
To pick samples from the vertical dispensers, our robot has to be well-positioned in 
front of it. We can acquire a good localization from our beacons data, but they cannot 
tell us the robot heading. Information about the angle is corrected by Monte Carlo lo-
calization while the robot is moving. The information it provides can suffer from the 
error of about 7 degrees. It is not a big error for navigation towards the destination 
container, but this accuracy is not sufficient for approaching the dispensers. 

In the game, the dispensers are made using transparent plastic sheet and the balls in 
a dispenser can be easily seen through it. Therefore we decided to use a camera 
mounted centrally pointing straight in front of the robot to detect the balls inside the 
dispenser. Then, to position exactly towards a dispenser full of red (blue, white) balls, 
the camera has to see red (blue, white) area just in the middle. 

Every camera pixel was rated based on its colour distance to the expected colour in 
the HSV colour space. Then it was easy to find the gravity centre of that colour. Such 
centre position was used for the robot movement regulation: the robot was ordered to 
proceed forwards with constant speed and the turning was bound to the colour centre.  
The more the centre was deviated, the faster turn was ordered. 

However, during the Czech National Cup, we have met an unexpected problem: 
about 2 metres behind the red balls dispenser, an orange painted wall was located. Its 
colour, in combination with low scene lighting, caused our algorithm to be unsuccess-
ful. Fortunately enough, after proper camera calibration, this problem disappeared. 

7 Opponent collision avoidance 

Collision avoidance is one of the most important issues to solve for the robot move-
ment. Collision with obstacles or even with the opponent could harm the robot sig-
nificantly; in Eurobot, such collision could even cause disqualification.  

As we already mentioned, we use Hermite curves to calculate the route of our ro-
bot. This is helpful also for the opponent collision avoidance. The main advantage of 
this approach is that we can change the route as little as we have to and it still remains 
continuous and natural. The only needed thing is to add one properly positioned con-
trol point to the curve we are moving on. More complicated situation arises when the 
opponent’s robot is occupying our next checkpoint area (e.g. a ball place, dispenser or 
the container). In this case we have three possibilities: wait, move on and miss that 
checkpoint or plan other action. We decided we may wait only in case we don’t have 
any other option, e.g. the robot is full of samples and needs to unload them into the 
container but the container area is occupied by the opponent.  
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Fig. 7 shows the original route and the re-planned route after the robot spotted the 
opponent and the safety area around the opponent lies on our route. A new checkpoint 
is therefore added and the resulting route well bypasses the obstacle.  

It has proved during the matches that this behaviour is more effective than a simple 
stopping or complete goal and route re-evaluation. 

 
Fig. 7. Route re-planning after the opponent has been detected. The robot travels from bottom 

left to top right position, its original route shown as dotted line, new route as solid line 
(screenshot) 

8 Sensors and effectors 

Our robot uses several different types of sensors and effectors. For the Brain, all of 
them are represented by objects which encapsulate their physical functionality and 
provide communicational interface. The objects may even provide enhanced func-
tionality in addition to the straightforward feature passing.  

The overall software design is layered; currently it is composed of four layers. 
Fig. 8 gives an impression; the layers are in more detail described in [2] and [8]. 

 
Currently used effectors and sensors are: 
− 2 Wheel power motors, 2 extractor motors and 1 harvester motor (connected by 

one to 5 individual HBmotor boards); 
− An encoders mounted on every motor (connected to its respective HBmotor 

board); 
− 2 bumpers located in front corners of robot chassis (connected to both main wheel 

HBmotor boards); 
− A bumper in the middle front area of the robot for dispenser detection (can also 

provide the last detection of the opponent); 
− A compass; currently used only for rough MCL samples weighting; 
− A camera for detecting the colour of a collected ball inside the robot; 
− A camera for game elements lookup on the playing field (it can look for the verti-

cal dispensers as described earlier or it can detect balls laying on the playfield); 
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Fig. 8. Control software design 

− 3 active beacons located at fixed positions around the playing field and 1 passive 
receiver mounted on the robot; 

− We planned to use the exactly same receiver to be placed on the opponent robot 
and transmit its data (i.e. the opponent position) via Bluetooth to our robot, but we 
didn’t implement and tune it early enough to use it during the contest. However, it 
could provide interesting and important information 

(It was also possible to connect a regular keyboard or use network connection to the 
system because the robot was run using standard Linux Operating system on a stan-
dard miniITX board, but we do not consider these to be proper sensors for an autono-
mous robot) 

9 Technical Reference 

The robot main hardware components are:  
− Motherboard: VIA EPIA miniITX board with 512MB RAM and 2GB Compact-

Flash card. 
− HBmotor board: Atmel ATmega8 microcontroller + standard MOSFET-type H-

bridge. 
− Power source: Sealed Pb accumulators, 12V, 7.2Ah, 2.6kg. 
− Motors: GHM-04 (7.2V, 0.7Nm at 0 rpm) with integrated gearbox 50:1 (giving 

output 175 rpm) + QME-01 encoders (6000 steps per wheel revolution). 
− Wheels: simple undamped wheels, 8.5 cm diameter, max speed ~ 0.7 m/s. 
− Ultrasonic sensors UST40T (transmitter) and UST4R (receiver). 
− CMPS03 compass. 
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10 Conclusion and Future Works 

The current robot design and implementation meet both the criteria determined by the 
Eurobot contest rules and the expectations of the author team. Of course, as any other 
project, it can be further enhanced and expanded, for example: 
− The PID regulation could be implemented in the HBmotor board. Its advantage is 

the speed of response it can react to the changes. We expect faster reaching of the 
desired speed and smoother motion of the robot. 

− Currently the asynchronous state switch is implemented so that when its handler 
finishes and the previous state is to be restored, that state is restarted. For certain 
operations it might be better to restore the previous state exactly from where it was 
paused. This does not apply to all states (e.g. it makes sense when collecting the 
balls on the playing field but it would not be useful for manoeuvring in front of the 
dispenser) and it could be in fact used even now by splitting such states into more 
smaller states. However, it would easily lead to very complicated state machine. 

− Many new sensors could be added (more bumpers, GPS device for outdoor use, 
distance measuring sensors etc.). 

− New actuators and manipulators can be added to perform other tasks to those re-
quired for Eurobot contest. 
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